Benchmarks: Difference between revisions

From CYANA Wiki
Jump to navigation Jump to search
Line 1: Line 1:
== CYANA Benchmarks ==
== CYANA Benchmarks ==


Desktop: 1 Intel Core2 Quad CPU Q6600, 2.40 Ghz, 3.0 GB memory, Ubuntu 8.04 Linux, gfortran (-O3) Fortran compiler
===== Benchmark calculations: =====
 
* '''basic:''' Structure calculation of a protein with 114 amino acid residues, 1737 NOE distance restraints, 110 torsion angle restraints. 50 conformers are calculated using 4000 torsion angle dynamics steps per conformer.
 
* '''auto:''' Structure calculation with automated NOESY assignment of a protein with 114 amino acid residues, 1737 NOE distance restraints, 110 torsion angle restraints. 8 x 100 = 800 conformers are calculated using 10000 torsion angle dynamics steps per conformer.
 
* '''test suite:''' Complete CYANA 3.0 test suite, comprising the 'basic' and 'auto' calculations, as well as structure calculations for homodimers, using RDCs, pseudocontact shifts, etc.
 
===== Desktop: =====
 
Benchmarks run on a desktop computer with 1 Intel Core2 Quad CPU Q6600, 2.40 Ghz, 3.0 GB memory, Ubuntu 8.04 Linux, gfortran (-O3) Fortran compiler
 
Using 4 processors: basic = 16 s, auto = 762 s, test suite = 2997 s
 
Using 1 processor: basic = 5 s, auto = 152 s, test suite = 529 s


===== Server: =====
===== Server: =====


Benchmarks run on a Linux cluster system with 20 nodes, each with 2 Intel Xeon Quad CPU E5462, 2.80 Ghz, 16 GB memory, Ubuntu 8.04 Linux, gfortran (-O3) Fortran compiler
Benchmarks run on a Linux cluster system with 20 nodes, each having 2 Intel Xeon Quad CPU E5462, 2.80 Ghz, 16 GB memory, Ubuntu 8.04 Linux, gfortran (-O3) Fortran compiler


Using 100 processors: basic = 5 s, auto = 152 s, test suite = 529 s
Using 100 processors: basic = 5 s, auto = 152 s, test suite = 529 s
Line 16: Line 30:


Using 1 processor: basic = 5 s, auto = 152 s, test suite = 529 s
Using 1 processor: basic = 5 s, auto = 152 s, test suite = 529 s
===== Benchmark calculations: =====
* '''basic:''' Structure calculation of a protein with 114 amino acid residues, 1737 NOE distance restraints, 110 torsion angle restraints. 50 conformers are calculated using 4000 torsion angle dynamics steps per conformer.
* '''auto:''' Structure calculation with automated NOESY assignment of a protein with 114 amino acid residues, 1737 NOE distance restraints, 110 torsion angle restraints. 8 x 100 = 800 conformers are calculated using 10000 torsion angle dynamics steps per conformer.
* '''test suite:''' Complete CYANA 3.0 test suite, comprising the 'basic' and 'auto' calculations, as well as structure calculations for homodimers, using RDCs, pseudocontact shifts, etc.

Revision as of 17:54, 3 December 2008

CYANA Benchmarks

Benchmark calculations:
  • basic: Structure calculation of a protein with 114 amino acid residues, 1737 NOE distance restraints, 110 torsion angle restraints. 50 conformers are calculated using 4000 torsion angle dynamics steps per conformer.
  • auto: Structure calculation with automated NOESY assignment of a protein with 114 amino acid residues, 1737 NOE distance restraints, 110 torsion angle restraints. 8 x 100 = 800 conformers are calculated using 10000 torsion angle dynamics steps per conformer.
  • test suite: Complete CYANA 3.0 test suite, comprising the 'basic' and 'auto' calculations, as well as structure calculations for homodimers, using RDCs, pseudocontact shifts, etc.
Desktop:

Benchmarks run on a desktop computer with 1 Intel Core2 Quad CPU Q6600, 2.40 Ghz, 3.0 GB memory, Ubuntu 8.04 Linux, gfortran (-O3) Fortran compiler

Using 4 processors: basic = 16 s, auto = 762 s, test suite = 2997 s

Using 1 processor: basic = 5 s, auto = 152 s, test suite = 529 s

Server:

Benchmarks run on a Linux cluster system with 20 nodes, each having 2 Intel Xeon Quad CPU E5462, 2.80 Ghz, 16 GB memory, Ubuntu 8.04 Linux, gfortran (-O3) Fortran compiler

Using 100 processors: basic = 5 s, auto = 152 s, test suite = 529 s

Using 50 processors: basic = 5 s, auto = 152 s, test suite = 529 s

Using 20 processors: basic = 5 s, auto = 152 s, test suite = 529 s

Using 10 processors: basic = 16 s, auto = 762 s, test suite = 2997 s

Using 1 processor: basic = 5 s, auto = 152 s, test suite = 529 s