CANDID: Difference between revisions
Jump to navigation
Jump to search
(New page: ''Combined automated NOE assignment and structure determination module'' CANDID is an algorithm for the automated assignment of NOESY spectra. Once nearly complete sequence-specific reson...) |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
''Combined automated NOE assignment and structure determination module'' | ''Combined automated NOE assignment and structure determination module'' | ||
CANDID is an algorithm for the automated assignment of NOESY spectra. Once nearly complete sequence-specific resonance assignments are available, the automated CANDID approach greatly enhances the efficiency of NOESY spectral analysis. | CANDID is an algorithm for the automated assignment of NOESY spectra. Once nearly complete sequence-specific resonance assignments are available, the automated CANDID approach greatly enhances the efficiency of NOESY spectral analysis. | ||
Line 9: | Line 10: | ||
* A new, entirely probability-based automated NOESY assignment algorithm has replaced CANDID in CYANA from version 2.0 onwards. CANDID is part of the program CYANA 1.0. | * A new, entirely probability-based automated NOESY assignment algorithm has replaced CANDID in CYANA from version 2.0 onwards. CANDID is part of the program CYANA 1.0. | ||
* A different, stand-alone version of CANDID has been developed and is available from Torsten Herrmann. | * A different, stand-alone version of CANDID has been developed and is [http://perso.ens-lyon.fr/torsten.herrmann/Herrmann/Software.html available] from [http://perso.ens-lyon.fr/torsten.herrmann/ Torsten Herrmann]. | ||
== References == | == References == | ||
* Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, | * Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. [http://dx.doi.org/10.1016/S0022-2836(02)00241-3 J. Mol. Biol. 319, 209–227 (2002)] |
Latest revision as of 12:44, 8 December 2008
Combined automated NOE assignment and structure determination module
CANDID is an algorithm for the automated assignment of NOESY spectra. Once nearly complete sequence-specific resonance assignments are available, the automated CANDID approach greatly enhances the efficiency of NOESY spectral analysis.
CANDID was written by Torsten Herrmann and Peter Güntert.
Availability
- A new, entirely probability-based automated NOESY assignment algorithm has replaced CANDID in CYANA from version 2.0 onwards. CANDID is part of the program CYANA 1.0.
- A different, stand-alone version of CANDID has been developed and is available from Torsten Herrmann.
References
- Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002)